Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Comput Biol Med ; 158: 106814, 2023 05.
Article in English | MEDLINE | ID: covidwho-2273828

ABSTRACT

This paper presents a novel framework, called PSAC-PDB, for analyzing and classifying protein structures from the Protein Data Bank (PDB). PSAC-PDB first finds, analyze and identifies protein structures in PDB that are similar to a protein structure of interest using a protein structure comparison tool. Second, the amino acids (AA) sequences of identified protein structures (obtained from PDB), their aligned amino acids (AAA) and aligned secondary structure elements (ASSE) (obtained by structural alignment), and frequent AA (FAA) patterns (discovered by sequential pattern mining), are used for the reliable detection/classification of protein structures. Eleven classifiers are used and their performance is compared using six evaluation metrics. Results show that three classifiers perform well on overall, and that FAA patterns can be used to efficiently classify protein structures in place of providing the whole AA sequences, AAA or ASSE. Furthermore, better classification results are obtained using AAA of protein structures rather than AA sequences. PSAC-PDB also performed better than state-of-the-art approaches for SARS-CoV-2 genome sequences classification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Protein Structure, Secondary , Amino Acids , Databases, Protein , Protein Conformation
2.
Biophys Rev ; : 1-13, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2209554

ABSTRACT

SARS-CoV-2 3C-like protease (3CLpro), a potential therapeutic target for COVID-19, consists of a chymotrypsin fold and a C-terminal α-helical domain (domain III), the latter of which mediates dimerization required for catalytic activation. To gain further understanding of the functional dynamics of SARS-CoV-2 3CLpro, this review extends the scope to the comparative study of many crystal structures of proteases having the chymotrypsin fold (clan PA of the MEROPS database). First, the close correspondence between the zymogen-enzyme transformation in chymotrypsin and the allosteric dimerization activation in SARS-CoV-2 3CLpro is illustrated. Then, it is shown that the 3C-like proteases of family Coronaviridae (the protease family C30), which are closely related to SARS-CoV-2 3CLpro, have the same homodimeric structure and common activation mechanism via domain III mediated dimerization. The survey extended to order Nidovirales reveals that all 3C-like proteases belonging to Nidovirales have domain III, but with various chain lengths, and 3CLpro of family Mesoniviridae (family C107) has the same homodimeric structure as that of C30, even though they have no sequence similarity. As a reference, monomeric 3C proteases belonging to the more distant family Picornaviridae (family C3) lacking domain III are compared with C30, and it is shown that the 3C proteases are rigid enough to maintain their structures in the active state. Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-022-01020-x.

3.
Chemphyschem ; 23(23): e202200382, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-1971249

ABSTRACT

A structural analysis over various spike proteins from three highly pathogenic Betacoronavirus was done to understand their structural differences. The proteins were modeled using crystal structures from SARS-CoV, MERS-CoV, and other Betacoronavirus that infect bats and pangolins. The group was split in two sets; the first set corresponds to the non-mutated spike proteins, while the second set corresponds to mutated spike variants alpha, beta, gamma, delta, omicron and mu; five of them classified as variants of concern and the last one as variant of interest. A conformational space exploration was carried out for every protein by using molecular dynamic simulations. Root mean square fluctuations, principal component and cross-correlation analysis were carried out over the dynamics to analyze the flexibility and rigidity of every protein in comparison to the wild type Spike protein from the SARS-CoV-2. The obtained results indicate that the proteins, which are not spread among humans, have smooth movements compared to those of SARS-CoV-2 and its variants. In addition, a relationship between the speed of the virulence and the movement of the protein can explain the behavior of delta and omicron variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/genetics , Mutation
4.
Aims Biophysics ; 9(1):72-85, 2022.
Article in English | Web of Science | ID: covidwho-1786148

ABSTRACT

Mucormycosis infection may develop after using steroids treatment to improve the severely of the symptoms in coronavirus patients. The rising in the infection rate of mucormycosis has been noticed in patients after COVID-19 infection. To understand the high morbidity mucormycosis coinfection, the cell surface Glucose Regulated Protein 78 (CS-GRP78) was docked to the virus ACE2-SARS-CoV-2 RBD to create the ACE2-SARS-CoV-2 RBD-GRP78 complex which facilitates the virus entrance into the cell. The spore coat protein homolog 3 (CotH3) of mucormycosis was modeled and docked to the ACE2-SARS-CoV-2 RBD-GRP78 complex. The binding energies of CotH3 with RBD, ACE2, and GRP78 were calculated. The binding results show that GRP78 substrate-binding domain beta weakly binds to the spike RBD combined with ACE2 of the spike RBD-ACE2 complex. Its main function is to stabilize the binding between RBD and ACE2, while CotH3 has a strong affinity for the SARS-CoV-2 RBD, but not for ACE2 or GRP78. The CotH3 appeared to have the same affinity to RBD in the SARS-CoV-2 lineages with some preference to the lineage B.1.617.2 (Delta variant). The complex design illustrates that the coat protein of the fungi is more likely linked to the spike protein of the SARS-CoV-2 virus, which would explain the increased mortality mucormycosis coinfections in COVID-19 patients.

5.
IUCrJ ; 8(Pt 6): 857-859, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1549098

ABSTRACT

As we respond to viral epidemics and accelerate the discovery of new viruses, sifting through vast volumes of structural virology data could rapidly become an impossible task. virusMED is a curated atlas of metal/drug-binding and immunological hotspots in viral protein structures that provides a navigation guide for structure-function analysis and the development of antiviral strategies.

6.
Protein Sci ; 31(1): 173-186, 2022 01.
Article in English | MEDLINE | ID: covidwho-1490887

ABSTRACT

Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB-related secondary database data, original web-based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM-Arc for computational structure models, and XRDa for raw X-ray diffraction images, both of which promote open science in the structural biology community. During the COVID-19 pandemic, PDBj has also started to provide feature pages for COVID-19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID-19 outreach content for high school students and teachers.


Subject(s)
Databases, Protein , Proteins/chemistry , Animals , Anniversaries and Special Events , COVID-19/metabolism , Humans , Japan , Models, Molecular , Protein Conformation , Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Software , User-Computer Interface , Viral Proteins/chemistry , Viral Proteins/metabolism
7.
Int J Mol Sci ; 22(19)2021 Oct 07.
Article in English | MEDLINE | ID: covidwho-1463711

ABSTRACT

Coronavirus disease 19, or COVID-19, is an infection associated with an unprecedented worldwide pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has led to more than 215 million infected people and more than 4.5 million deaths worldwide. SARS-CoV-2 cell infection is initiated by a densely glycosylated spike (S) protein, a fusion protein, binding human angiotensin converting enzyme 2 (hACE2), that acts as the functional receptor through the receptor binding domain (RBD). In this article, the interaction of hACE2 with the RBD and how fusion is initiated after recognition are explored, as well as how mutations influence infectivity and immune response. Thus, we focused on all structures available in the Protein Data Bank for the interaction between SARS-CoV-2 S protein and hACE2. Specifically, the Delta variant carries particular mutations associated with increased viral fitness through decreased antibody binding, increased RBD affinity and altered protein dynamics. Combining both existing mutations and mutagenesis studies, new potential SARS-CoV-2 variants, harboring advantageous S protein mutations, may be predicted. These include mutations S13I and W152C, decreasing antibody binding, N460K, increasing RDB affinity, or Q498R, positively affecting both properties.


Subject(s)
COVID-19/immunology , Host-Pathogen Interactions , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/virology , Humans , Immunity , Models, Molecular , Mutation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
IUCrJ ; 8(Pt 6)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1455435

ABSTRACT

Metal binding sites, antigen epitopes and drug binding sites are the hotspots in viral proteins that control how viruses interact with their hosts. virusMED (virus Metal binding sites, Epitopes and Drug binding sites) is a rich internet application based on a database of atomic interactions around hotspots in 7041 experimentally determined viral protein structures. 25306 hotspots from 805 virus strains from 75 virus families were characterized, including influenza, HIV-1 and SARS-CoV-2 viruses. Just as Google Maps organizes and annotates points of interest, virusMED presents the positions of individual hotspots on each viral protein and creates an atlas upon which newly characterized functional sites can be placed as they are being discovered. virusMED contains an extensive set of annotation tags about the virus species and strains, viral hosts, viral proteins, metal ions, specific antibodies and FDA-approved drugs, which permits rapid screening of hotspots on viral proteins tailored to a particular research problem. The virusMED portal (https://virusmed.biocloud.top) can serve as a window to a valuable resource for many areas of virus research and play a critical role in the rational design of new preventative and therapeutic agents targeting viral infections.

9.
Microorganisms ; 8(8)2020 Aug 18.
Article in English | MEDLINE | ID: covidwho-854167

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral outbreak started in late 2019 and rapidly became a serious health threat to the global population. COVID-19 was declared a pandemic by the World Health Organization in March 2020. Several therapeutic options have been adopted to prevent the spread of the virus. Although vaccines have been developed, antivirals are still needed to combat the infection of this virus. SARS-CoV-2 is an enveloped virus, and its genome encodes polyproteins that can be processed into structural and nonstructural proteins. Maturation of viral proteins requires cleavages by proteases. Therefore, the main protease (3 chymotrypsin-like protease (3CLpro) or Mpro) encoded by the viral genome is an attractive drug target because it plays an important role in cleaving viral polyproteins into functional proteins. Inhibiting this enzyme is an efficient strategy to block viral replication. Structural studies provide valuable insight into the function of this protease and structural basis for rational inhibitor design. In this review, we describe structural studies on the main protease of SARS-CoV-2. The strategies applied in developing inhibitors of the main protease of SARS-CoV-2 and currently available protein inhibitors are summarized. Due to the availability of high-resolution structures, structure-guided drug design will play an important role in developing antivirals. The availability of high-resolution structures, potent peptidic inhibitors, and diverse compound scaffolds indicate the feasibility of developing potent protease inhibitors as antivirals for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL